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STIMMARY

landing tests of a prismatic model having an angle of
.

were made as part of a landing investigation being con-

. ducted at the Langley impact basin to determine the distribution of water
pressure on seaplanes. Landings were made for beam-loading coefficients
of 0.k8 and 0.97 at fixed trims between 0.2° and 30.3° for a rfige of

4 initial flight-path angles from 4.60 to P5.go and also for 900.

Initial impact conditions, over-all.loads and motions, and maximnn
pressures are presented in tables and figures for all the landings,
together with instantaneous-pressure-distributionand wave-rise data.

The experimental wave rise, peak pressures, and pressure distribu-
tions sre found to be in fair agreement with the predictions of the
available theory; however, better agreement is obtained by modification
of the theory.

INTRODUCTION

In order to obtain information regarding the magnitude and distribu-
tion of the water-pressure distribution during seaplane landings, an
experimental program is being conducted at the Langley impact ‘basinon
various prismatic models. The results of investigations on heavily
loaded prismatic models having angles of dead rise of 0° and 30° have.
been reported in references 1 and 2, respectively. The present investi-

S gation was made on a lightly loaded prismatic model having bean-loading

coefficients of O.~ and 0.97, an angle of dead rise of 22~0, and a beam
.
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of 3.39 feet. Fixed-trim landings were made in smooth water for a large
range of trims, velocities, and flight-path angles. During each landing,
time histories of the pressures, velocitie6,7iraft, and over-all loads s

were recorded.

The purpose of this paper is to present the experimental pressure-
distributionj velocity, draft, wave-rise, and over-all-loads data obtained
from this investigation and to use these data to evaluate-and extend the
existing knowledge of the wave rise and pressure distribution on V-bottom
seaplanes. Pressure distributions are ccnqared to show the effects of
flight-path angle and been loading, and experimental wave-rise and pres-
sure data are compared with the-available theoretical and empirical pre-
dictions that are summarized in references 3 and 4. In addition these
theories are modified in order to obtain better agreement with the experi-
mental data.

A

b

c

*

SYMBOLS

hydrodynamic aspect ratio

(

(Wetted length at keel)2

Wetted area projected normal to keel)

beam of model, feet

wetted semiwidth at any station along keel, feet

equivalent planing ielocity, feet

(
? 2=~+$cotT=—

sin -r)

FN hydrodynamic force normal to keel
flat plate), pounds

g acceleration due to gravity, 32.2

per second

(normal to surface for a

feet per second per second

J empirical function of angle of dead rise

()

tam 62
K transverse-wave-r~seratio —

tan 51

‘%
impact acceleration normal to undisturbed water surface,

g units (“z Cy T) .

. .

6

..-

*“

.“
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P

7

instantaneous pressure, pounds per square inch

time after water contact, seconds

instantaneous resultant velocity of model, feet per second

weight of model and dropping weig3t, pounds

instantaneous velocity of model parallel to undisturbed water
surface, feet per second

instantaneous draft of model normal to undisturbed water
surface, feet

instantaneous velocity of model normal to undisturbed water
surface, feet per second

instantaneous velocity of model norms,lto keel, feet per second..
(i sin T + ~ Cos T)

instantaneous acceleration of

()ni@second per second -—
COS T

angle of dead rise, degrees

model normal to keel, feet per

instantaneous flight-path angle relative to

surface, degrees
()

tin-l ~
.
x

angles used to designate wave rise, degrees

distance-forward of step, measured p~allel

transverse distance from keel, feet

effective angle of dead rise, degrees

undisturbed water

to keel, feet

length of keel below undisturbed water surface, beans

(b ‘n .)

wetted length based on peak-pressure location (longitudinal
distance from step to position of peak pressure at keel),
beams

.
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*
P mass density of water, 3-.938 slugs per cubic foot -. —

T trim, degrees

Subscripts:

o at water contact

max at maximum value

P at peak pressure .

Dimensionless variables:

GN

%P

normal-load coefficient

( )

FN
on A; —

&’%2A

normal-load coefficient
FN

on Xp;

()
&b*~

.

.

for a rectangular flat plate based

for a rectangular flat plate based

()wbean-loading coefficient —
pgbs

P
~

pressure coefficient based on ~

2

APPARATUS .-

The investigationwas conducted in the Langley impact basin with the
test equipment described in reference 5. The test model was a forebody
of a seaplane float, substanti~llyprismatic in shape as shown in figure 1.

1°The prismatic section had an arigleof dead rise of,2% .

The instrumentation used to measure horizontal velocity and vertical
velocity at water contact is described in reference 5. Accelerations in
the vertical direction were measured with two oil-damped strain-gage-type
accelerometers having approximately 0.65 of the critical damping. One

. .
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.
accelerometer had a range from -12g to 12g and a natural frequency of
120 cycles per second while the other had a range from -lOg to 10g and

. a natural frequency of 100 cycles per second. Both instruments were
recorded by 0.65 critically damped galvanometers having na&ural fre-
quencies of 100 cycles per second. Vertical velocity after water con-
tact was obtainedby integration of the vertical acceleration. Draft
was obtained by double integration of the vertical acceleration. The
instants of water contact and exit of the model were determined by means
of an electrical circuit completed by the water. Pressures were measured
with 43 gages distributed over the hull bottom as shown in figure 2 and

table I. Forty-two of these gages had flat diaphragms of ~ -inch diameter.

which were mounted flush with the hull bottom; the other was a bellows-

type gage with a ~- inch-dismeter pickup surface.
4

Natural frequencies

of the pressure ga~s were several thousand cycles per second and the
response of the oscillograph recording system was accurate to frequencies
up to slightly more than 1000 cycles per second.

In order to evaluate properly the experimental accelerometer data
. (and the derived velocity and draft tits), the dynamic response charac-

teristics of the accelerometers and the corresponding recording galva-
nometers had to be taken into account. Analysis of this dynamic response

● for the experimental conditions of these tests showed that the response
characteristics of the accelerometer-galvanometer circuit were of such
a nature that the magnitude of the recorded accelerations should be
reasonably accurate but that the recorded traces were displaced in time
by approximately 0.005 second. All the data presented in this paper
have been corrected for this the lag.

PRECISION

The instrumentation used in these tests gives measurements tha’tare
estimated to be usually accurate within the following limits:

Horizontal velocity, feet per second . . . . . . . . . . . . . . *0.5
Vertical veloci~ at water contact, feet per second . . . . . . *0.2
Vertical velocity after water contact, feet per second . . . . . *0.5
Vertical acceleration, percent . . . . . . , . . . . . . . . . . . *5
Pressure, pounds
l%ne, seconds .
Draft, feet . .

persquareinch. . . . . . . . . . . . . *2 * O.lp
. . . . . . . . . . . . . . . . . . . . ● . . *O. 005
. . . . . . . . . . . . . ..0.. . . . . . . &o.03
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TEST PROCEDURE
*

A series of 30 landings were made in smooth water with the model
at 0° yaw”and at various fixed trims. Sixteen landings were made Witl- -
the model loaded to.a weight of 1177 pounds, which corresponded to a
beam-loading coefficient of 0.48. For these larding runs the model was
tested at+trims of 0.2°, 3.2°, 6.3°, 9.3°, @.@, 20.5°, and 30.3° for
a range of’initial flight-path angles from 4.60 to 25.9° and also for
90° ●

FomFteen landings were made with the model loaded to a weight of
2369 pounds, which corresponded to a beam-loading coefficient of 0.97.
For these landing runs the model was tested &t trims of 0.2°, 6.30,
12.4°, 15.4°, 20.5°, and 30.3° for a range of initial flight-path angles
from approximately 5° to 15° and also for 90°.

During each landing a compressed-air engine (described in refer-
ence 5) exerted a vertical lift force on the model equal to the test
weight so that the model simulated a seaplane with wing lift equal to
the weight of the seaplane. Otherwise the model was free to move in
the vertical direction. The model was attached to a towing carriage
weighing approximately 5400 pounds in such a manner that it could not
move horizontally with respect to the carriage. Because of this large
additional carriage inertia, the model did not slow down very much
(horizontally) during any landing.

.

.—

—
*

EXPERIMENTAL RESULTS

The initial vertical, horizontal, and resultant velocities, flight-
path angles, trims, and model weights for all landings are presented in
table 11 together with the experhnental over’-allloads and motions.
Time histories of the vertical velocity are presented in table III. The
corresponding instantaneous horizontal velocities are substantially the
same as the initial values given in table 11 since the change in hori- -.
zontal velocity during any impact was small. The values of the maxim~
pressures recorded on each pressure gage are presented for all runs in
table IV and the corresponding times of maximum pressure are presented
in table V. The peak-pressure data for two runs are plotted against

—
.-

142
2

in figure 3. The average value of the peak-pressure coeffi- . .. ...

% (see faired lines in fig. 3) as obtained from similar plotscient ~

for other runs are
table VI are given

plotted against trim in figure 4 for all runs. In f
instantaneous-pressure-distributiondata from most

.
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*
of these landings together with the corresponding measurements of time,
draft, vertical velocity, and vertical acceleration. Illustrative pres-

. sure distributions are plotted in figure 5 for vsrious trims.

Transverse-wave-rise measurements, as defined by the following
equation, are shown in figure 6 for trims between 3.2° and 15.4°:

K= (1)

The @es 51 md 52 are shown in figure 7(a), 81 being givenby

the relation

n The angle 52 was ~btained from observations of the experimental pres-

sure distributions (from table VI) or of the position of the peak pres-
sure on the float (from table V). For trims greater than approximately

* 15°, an examination of unpublished underwater photographs obtained at
Langley tank no. 1 for a planing prism having an angle of dead rise of
20° indicates that the peak-pressure line is curved; therefore, equa-
tion (1) is not valid. Consequently, no wave-rise ratios are shown for
the trtis larger than 15.4°.

ANALYSIS OF RESULTS

Wave Rise

During the impact or.plsning of a V-bottom prismatic model, the
water rises above the level water surface. The forwsrd component of
this rise [Xp - Ad in fig. 7(a)) is usually small. The transverse wave

rise, however, is usually large. This transverse wave rise is defined
by the location of the peak-pressure line on the hull bottom, which is
close to the boundary of the wetted srea (see fig. 7). For small trims
(up to approx. 15° according to the previously mentioned unpublished
planing data for a model having an an@e of dead rise of 200), this peak-
pressure line is substantially straight and can be conveniently described

●

by the ratio K. Pierson snd Leshnover have pro~sed the following
equation for K in reference 4:

.
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[K*:l-
3 tanpp Cos p
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This
thiS

‘[

theoretical variation is
paper in figure 6; Fair

NACA TN 2816

)

tan ~ sin2~

“3.31’(
(2)

.

.

compared with the experimental data of
agreement is seen to exist. .-

Peak Pressures -

Several equations have been proposed for the peak pressure on
V-bottom wedge; having a finite ~gle of trim. T& of the most promising
of these equations are considered and a third more accurate equation is
proposed. The following’equation was derived”by Pierson and Leshnover
in reference 4:

( )2.~ . K - Si112p
+ .Cospp

5;2 sin2~ + K2tan2T
(3): .

.

where K is given by equation (2). Equation (3) is based upon a theo-
retical analysis concerned with the peak-pressure line. If such a :ine ●

exists reasonable results might be expected f“r”omthis equation.
—

However,
for very large trims no such line exists (see fig. 7) and this analysis
does not hold. For exsmple at 90° trim equation (3) predicts

Pp—=
1 .2

COS%

pz

whereas a more accurate relation is

Pp

p=l
2

w.@-

. . -

(see reference 2). In order to determine the vaiue of equation (3) for
1°

an angle of dead rise of 22-2’
computed and experimental peak pressures

are compared in figure 4. It is seen that this equation is conservative
for trims below approximately 10° and is fairly reasonable for trims
between 10° and 30°.
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. A second equation which has been proposed for the peak pressure
is the following semiempirical equation proposed in reference 2:

*

Pp . 1
(5)

5i2 sin% + -!!Ltan2~ COS%
X2

This equation is an empirical relation which was chosen to satisfy the
theoretical relation given by equation (4) for 90° trim, to satisfy the
following theoretical relation given by Wagner “

PP ~2
= — cot2p

lm24
pz

(T = OO; f3+0°) (6)

and to satisfy the experimental variation of the peak pressure with trim
for a model having a 30° angle of dead rise (reference 2). Comparisons

, of the predictions of equation (5) with the experimental peak-pressure
.n

data from this paper for ~ angle of dead rise of 22~- (shown infig. 4)
.

,
indicate that, for this angle of dead rise, equation (5) is conservative
throughout the trim range.

Since neither equation (3)
agreement with the experimental
as

Pp
—=
1 .2
~pz

where J is considered to be a

nor equation (5) is always in close
data, a third equation is proposed here

1

sin% + J2COS%

function of angle of

Equation (7) was obtained by replacing the quantity

tion (5) by a more general quantity J. In order ~o
and to agree with the experimental data of reference

(7)

dead rise done.

2 tan ~ in equa- .
F
satisfy equation (6)
2, J must have the

values $tan ~ for ~~0° and T = 0° and for $ = 30° for all trims

SO that for these cases equations (5) ad (7) are identical. For other
, sngles of dead rise, J can be determined either empirically or from

#
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theoretical solutions for the two-dimensional case for which equation (7) m
reduces to the relation

P 1—= .
522 J2

(T = (&)

.

For an angle of dead rise of 22~0, an exalninationof the experimental

data in this paper indicated that the value & J that Mst fits the
data is 0.293. Cotiputedpeak pressures based on this,value of J are . .: ~.

.—

compared with the experimental pressures in figure 4. Reasonable agree-
ment is seen to exist for all trims,

Pressure Distribution —

Effects of beam loading and flight-path angle.- Ehr@rimental pressure-
distribtitiondata for various trims are shown in figure 5 in the form of ““- “

the dimensionless pressure coefficient ~. The effect of beam loading .—
$2*

on these pressure coefficients is shown in fi-@res 5(a) and 5(b) where
experimental data for the same trim, wetted ties, tid flight-path angle

.—
*

and diffeFent besm-loadirigcoefficients are “Superimposed. Tt appetis
-.

that there is little difference ifithe experimental pressure coefficients
—

for the two beam loadings tested. The effect of flight-path angle on the
.-

pressure coefficients is shown in figures 7(c) and 5(d) where experimental
data for the same trim, wetted area, and beti-loading coefficient and
different flight-path angles are supertiposed. No appsrent effect of
flight-path angle on the pressure coefficients is noted. This conclusion — -
is in agreement with the results of ieference 2 for
30° &ngle of dead rise.

Non-chine-immersed region.- For the transverse
on non-chine-immersed sections of a two-dimen~ional
fig. 7) during a zero-trim constaiit-velocityimpact,

a model with a

pressure distribution
V-bottom wedge (see
,Wagner (see refer-.—

ence 6 or 7) has obtained ti eqti~tionwhich can be expressed as

P i cat j3 _l—.

In order to extend this equation
Pierson and Leshnover (reference
replaced by”the equation

to apply to the case of a finite trim,
4) have proposed that this equation be ●
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*

The msximum value of equation (8) is given by the relation

2=($’0’’)2+’ (n cot e 2 2)

pz

1
‘P .
.2

ficot e

&z

(Stcot es 2)

This relation
. of 6 can be

equation (9):

11

(8)

(9)

J
.

definss 6’ in terms of the peak pressure. Different values
obtained by substituting equations

. The value obtained from equation (3), which will

{

~2
Yccotel=2 - 2K sin2P - K2sin2~ t~2T

sin2~ + K2tan%

2
Y(cot 61 = (K - SirLap

+ cos*p
sin2~ + K?.s,n2T

The value obtained from equation (~), which will

IIcot 82 =
41tan2p COS2TSh2T + —
~2

(3), (5), ~d(7)

be designated as-

(
l-ccot 61 2

(s-ccot 81 ~

be designated as

( )>2Stcot ’92 =

.-

into

91, is

2)

2)

ep, is
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.
The value obtained from equation (7), which will k-designated as 193,is

.

.

ficote3=2

K ““

3( cot e3 = 1

(
lfcote3~2

)sin% -t-J2COS2T

For the usual case of impacts not made at constant velocity, as a
first approximation the following term, which takes into account the
acceleration normal to the keel and which is usually negatim (see refer-
ence 3), should be added to equation (8)

(lo)
.“

.

where

(1.7 < A < w)

and

(Wetted length at keel)2
A=

Wetted area projected nornkl to keel
—

—

so that equation (8) becomes
.

v ““

.
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(11)

Theoretical pressure distributions computed according to equa-
tion (11) for the non-chine-immersed region of the model are shown in
figure > below the corresponding experimental pressure distributions.
Most of these pressure distributions were computed by using 193 with

J= 0.293. It is seen that on the non-chine-immersed region of the
float bottom these pressure distributions computed by using e3 are in

fair agreement with the experimental data for all trims. The pressure
distribution computed by using 81 “is shown in figure 5(a) for a trim

of 0.20. As would be expected from the peak-pressure analysis (see
fig. 4), this equation leads to pressures larger than the experimental
pressure for this trim. However, for larger trims (not shown) there is
little difference between the pressures predicted%y using el and e3.
For all trims, predictions of the pressure distribution based on 62

.
(not shown) are conservative approximately to the same extent as the
peak-pressure predictions of equation (~) are conservative (see fig. 4).
It is noted that the theoretical.effect of beam loading on the pressure.
distribution (which effect is given by expression (10)) appears to be
greater than the experimental effect.

Chine-immersed region.- A semiempirical procedure for predicting
the pressure distribution on the chine-immersed region of a prismatic
V-bottom wedge (fig. 7(b)) has been given in reference 3. It should be
noted that this procedure requires a knowledge of the normal-load coef-
ficient CNn of a rectangular flat plate as a function of trim and

wetted len~h. For trims below 16° this vsriation can be found from
figure 9 of reference 3. For luger trims the following equation, which
can be obtained from the analysis of reference 8, can be used

CN = ‘( ( )A) Si?ITCOSTX3+088A tmT

A Z“

Usually A x Ap so that CN is approximately equal to the quantity

CNn used in the analysis of reference 3. From the evidence presented
●

in=reference 3 for a model having a 30° angle of dead rise, it appears
that this procedure gives reasonable results for cases where the chine-

. immersed wetted area of the model is a large fraction of the total wetted
area.

.

,



14 NACATN 2816

Pressure distributions on the chine-immersed region of the float ‘ *

computed according to this semiempirical procedure are shown in fig-
ure ~ below the corresponding ex~riment.d pressure distributions. It

-.

is seen that where the chine-immersed wetted area is not too small a
*—

fraction of the total wetted area (figs. ~(d) and 5(e)) fair agreement
exists.

CONCLUDING REMARKS

From an analysis of the experimental data obtained during a smooth-
water landing investigation of a substantially prismatic float having

an angle of dead rise of 22~0 and besm-loading coefficients of 0.48 and
/

0.97, it is seen that the experimental wave rise is in fair agreement
with the theoretical prediction of Pierson ~ Leshnover.

Comparisons of computed and experimental peak pressures indicate
that the peak-pressure equation advanced by Pierson and Leshnover appears
to be conservative for trims below 10° and to be in reasonable agreement
with.the experimental data for trims between 10° and 30°. The peak-
pressure equation sitvancedin NACA TN 2111 a~ears to be conservative
for all trims. A third peak-pressure equation advanced herein appears
to be in reasonable agreement with the exper~ental data for all trims.

An examination of the experimental pressure distributions indicates
that there is no effect of flight-path angle on the pressure coefficients
based on the velocity normal to the keel and that there is little differ-
ence in the experimental pressure coefficients for the two besm loadings
tested. In non-chine-immersed regions of the float, computed pressure
distributions corres~nding to the three peak-pressure equations mentioned
compare with the experimental pressure distributions in much the same
manner as for the respective peak pressures. In chine-immersed regions
of the float where the chine-immersed wetted-area is not too small a
fraction of the total wetted area, computed pressure distributions are
in fair agreement with the experimental results.

.-

.—
.— —

—

.-

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics —

Langley Field, Vs., January 10, 1952
r-

,
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Gage

1

;
b
5
6
7

!
10
11
;$

lh
15
16
17
18
19
20
21
22

TABLE I

PRESSURE-CIA(?EPOSITIONS

(s- fig. 2)

J‘c
(i’t)

0.23
e23
.23
.23 I
.73
.73
●73
●73

1.02
1.07
1.07 I
1.07
1.07 I
1“.17
1.lJ8
1ob8
1,118
1.82
1.82
1.82
1*82
1.82

(A)
o.lt7

.77
1.08
1.39

.47

.77
1.08
1.39

●62
.li?
● 77

1.08
1.39

.62

.h?

.77
1.08

.32
●L7
.62
.77
●93

Gage

23
a
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
U
g

c
(ft)

1082
1.82
1.82
1.82
2.23
2.23
2e~7
2e~7
3.40
3.!!0
3.!JO
3*4O

.73

.73
●73
● 73

1.07
1.07
1.48
1ob8
1.h8

(A)
1.08
1.2&
1.39
I.n

.h?

.77

.h7

.77

.32
;~;

.?7
-*L7
-.62
-.77
-.93
-,32
-.93
-.32
--h?
-*77
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TABLE II

INITIALLANDINGCONDITIONSAND OW3R-ALLLOADSAND MOTIONS

At contact At (niw)nx At y-
Time,t,

V. +0 i. y. -t \ y $ t y at exit
(sec)

(deg)(fps)(fps).(fP:)(deg)(see) (g)(f’t)(fps](See)(H)

W = 1177lbs CA = 0.48

1 1005 10.5 0 90.000.0223.11o0.22 8.9 .--— —. Noefit
2 0.2 10.5 10.5 0 90*00 .025 3J$ ::; ::; .— - ---- No exit
3 10.5 10.5 0 90.00 .029 33 ---— —- No efit
4 80.6 10.1 80.0 7.20 O*O11o::: o:? ;.9 0::1:OS; 0.356

3*2 57.7 10.7 56.7 10.69 .Olil● .
6 6.3 8.2 10.5 7.2 10.ho 0.050‘k58 h6 65 0.1180.6L

7 9.3 89.3 7.2 89.o k.620.0673:77::11o3:0 o:yo900l!3 0.205
8 57s 10.2 56.6 10.22 .05811.57.~o 5.5 .62

L.920.0783*73O..1111.8 0.0930.112 0:2
1: :; 6.3o .058&.& .46 2.7 :% .;: ● 702
;; 12.h 80.5 8.9 80.0 6.35 .C675.15 .48 3.0 .197

58.9 10.8 57.9 10.57 .064&.88 .58 5.3 .105 :68 .266
13 117.910.6 46.7 12.79 ●066 h.17 .60 ;.9 .127 .75 .331
I& 47.1 10S 12.88 .062h.08 .57
15 20.!539 h 10.5 0.0763.670.6715:3 0:;3?\O:L
16 30.312&:7 10.8 22.2 25.91.10.o% ~2.240.911700 0.245]1.3hI 0.656

17 12.0 12.0 0
18 O*2 12.0 12.0 0
19 83.2 8.0 82.8
20 6.3 83S 11.1 82.8
21 63.8 1.1.162.8

g 12.& g:; 7.8 81.8
11.o 4502

63.5 11.3 62.52L 15.h ~6*8 I.I::
;;::25

26 82.21

W= 2369lb~ CL = 0.97

~

. .

.



.

P
CD

j (*) at tim (saa)
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1
2

i

5
6
7

;
10
11
12
13
l&
15
16
17
18
19
20
21

:
211
25
26
27

$
30

.

D. 09

iii

:::
1.2

2.4
1.8
.3
1-4
.4
-.
i

;:6
2.9
2.9
3.7
7*L
7*L
7.5
3.2
3.0
ho

;:$
3.9
6.0
1.7
.9

;:;
—

—

3.10
—

LI.13 0.3.6D.08 D.12 0.so*a

10.5
10.5
10.5
10D1
10.7
10.5
7.2
10.2
;:;

8.9
10.8
10.6
10.5
10.5
10.8
12.0
12.0
8.0
13..1
Ill
7.EI
11.o
11.3
Il.&
7.7
10.8
11.1
10.9
11.2

0.a 0.02

9.1
9JI
9.6
9*II

10.C

0.03

8.0

t;
8.4
9.0

:::
9.0

O.oh

7*1

R
6.9
7.7

;:;

;:;
6.7
7.1
8.9

9.0
8.9
9.1

10.2
9.6
9.8
7A
9*11
9.6

J::
10.1
10.6

6.9
9.0

1::;
.-—

L05 0.06

R
6.0
h.o
5.0

;::
5.3
3.8

i:;

:::
6.6
7.2
9.3

::;
6.0
6.6

;::
8.s
7.9
9.0

2::
7.8
-9.1
—

zll

::

6:7

2;
6.5
b*9
6.7
11.9
5.h
;.;

7:9
7.8
8.2
9.8
8.8

z:;
8.1

a
9A
9.1

9.9
6.2

7.7

9.0
9.8
—

11.9

?:
2.0

3.1
2.7
l.h
2.5
1.5

.8
1.0
?.9

$;

8:1
7.7

{:!
~;

.

::2
5.2
?.0
;;;

5.1
7.11
—

10.0
10.2
10.3
10.0
10.6

10.4
7.2

10.1

6.8
8.6
8.0

1o.7
10.5
10.II
10.II
10.8
11.a
11.a
8.c
1.1.1

5*3

H
2.9
3*9
%:

3.8
2.7
2.3

:::

5::
6.0

8.7
8.0

;::
5.3
;.:

72
6.6

:::

2:;
8.3
—

-
--

— —
—
—

-
—
—

hs
h.6 --

—
—
—
--
-. 2
—

—

—

Lo
1.2

1.7
6.0
--,

—

1.7

— —
—

-
--

--
—
—
—

G
.5

5::
—
—
1.0

--
—
--

—
—9.9

7.C

::;
8.3
8.6

—
.-
—.5

-. 7
—

—
—
—
—
—

6.3
7.7
8.1

—
—

—
——

g.: , ;:;

10:2 .9.7
10.2 9.8

10.7 10.5
11.2 lo.&

.5
1*9
2.0
2.6

6.7
7.1
7.3
2.4
2.1
3.2
1.3
11.7

:::
.IJ
-.
2.;
5.6

—
—

G—

—
—

~6

--

—
—

c1
—
—

—
0.1
11.7

—11.3 3.0.6
8.0 7.8

10.9 10.II
10.9 10.4
7.7 7.11
10.8 10.5
11.1 10.7
1.1.3U. o
7.6 7.3
10.5 9.9
10.9 10S
10.8 10.7
-— —--

---
-+
—
—
—
--
2.7

—
—
—

—
—
—
—

11.1

7.8
10.9

2.6

3:;
1.6

h.z
-.8
—
1.3
IL*8
—

.-
-. 6

—
---
—

.6

3.L
11.3
11.11
7.7

10.7
I..l.l
10.9
—

-.

2.0
--
—

1.5 ●9
—
—

— —
--

L:?l—

—
--
—
—
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rARLEv

TmE30F)uxmM 2u3rTmrF?m80Fm

The c

“m
ma- memurn (IMC) cm gage number-

9 10 St 12 13 Ill 25

●W O.m 0.019 0.031 O.cw 0.0160.o11
ml: .O11.020.031.0113.o15 .OJ.l

.011.020.032,.W .017.Olz
.020 .020.029.m .055.Oa .020
.020 .ab .026.037.lxl.023 .olB
:&B .&* .% .0h2.056.027 .025

— — .055 .058
.028:o& :035.d8 ,M3 .032.032
.tio.W3 .W —- (a) :% .%
.@ .0!!0.tis— (a)
.M .039.@l — -— .@ :Wll
.03b .031.@ .%& .070.037 .@
.033 .031.dlo.C51.W .038 .040
.036 .032.W! —– .0s8 .Mfl.@2
.ch2.039-— .M2 .077.oh9:.6?
.tih.62 .061— .091.@ .072
.Olh .010— .028.lxo.016.03.1

1

16 17 M 19 20 / 21 22 i

—
8

—
1 2 3 4 5 6 7

Lolo 0.019 0.034 O.OM 0.006 o.a9 0.032
.O11 .021 A% ;% .Ou! .020 .032
.012 .Oa .O1o .020 .032
.010 .020 .033 .oh7 .03.3 .0211 .OM
.m2 .020 .033 .OM .015 .026 .036
.013 .023.0311.dlh.016— .037
.020 .036●O!A .090.033.0b9.083

.021.032.W Ala .020.Oho
Tmil .039.056.090— .055 .09h
.OM .029 .d13 .070 .032 .0h3 .*
.(YM .028 .dJ2 .C59 .029 .@ ‘ .W8
.Olh .02h .0311 .C416 .0211 .Oxl .Okh
au .@ .03h .W .023 .033 .W
.m7 .026 .037 .a7 .0s .035 .*
.m7 .026 .035 .Q!16 .ca .038 .d18
.n8 .027 .038 .a!J8 .039 .01J5 .055
.UJ.o .01,8-— .0h2 .029 .OI.9 .028
.O11 .Cng — .@z .O1o .019 .030
.020 .033 A!17 .M1 .028 .tio .@3
.O111; .021J ,03h .U .020 .028 .0%
.013: .021 .032 .042 .LZ6 .026 .034
.021 .034 .248 .C’d .fnll.0L8 .053
.Ln2 .C@o .031 .OIJo .020 .030 .0410
.OI.5 .02h .032 .ao .025 --— .0h2

.ti .023 .@J .0h2 .@ .033 .O111

.@ ●OYI .ti8 ,.m .fllll.$5 .071k

.Olh .022 .032.Qz .029.037.a7

.03.3.023.032.0h2 .CQ8.036.M

.O1o.020.030.Oho .025 .032:g
●@.7 .@ .035.d12 .0311—

.021 0.032 — O.m 0.01’r0.022 0.027

.022 .033 .008 .o13 .(n7 .023 .027

.023 .0311 .aw .o# .017 .* .028

.030 —- .020 .023 .030 .035 .Oho

.030 .131 .017 .023 .027 .033 .0 7

.038 .139 .025 .032 .036 .*3 .&
(a) (a) .C61 .063 (a) (a) (a)
~of -— .038 Jao .OM .052 .fx9

— — ---- (a) (a)
;% (L)

_ :g :8; [:] ~] [:]

.UA .M9 .W1 .al .059 .Osh .m
M; .m .@3 .050; .*6 ~ .@3 .W

—- .m .C61 .~8 .&& .On
.057 .078 .0s7 .071 .077 .ca7 .097
.082 .129 .087 .091 .098 .1C5 .10s
.020 — .008 .013 .017 .a?2 .026

:%
.050
JM
.@

.cE.5
(a)

.082

.%9

.056

.058

.0s2

.057

.039

.039

.0s8

.O)Ja

.W

.065

.w

.C53

.aj2

.av
●G5
.@
.053
.W- 1

;OIJ

:2
MJ
.030
.035
.031J
.0s3
.dlz
;$

;050U_l
.0).3..028 — JJ#
.031 .@6 —
.02h .032 .Ohh .053
.020 .029 .038 .60
.Ohll .059 — .110
.028 -— -— .S7
.033 .cJlo— .M3
.032 .@l — .051

.@9 .075 .10!!—

.(#JO .%8 —- .077

.038 .0h7 — .070

.035 .W — .055

.Q!L9 .W6 — .0751
.OI.6 .Olz
.Oho .039
.027 .026
.026 .026
.65: Xlsg
.035
.@o —
.039 —
.WJ .099
.oh8 .Q56
.M .052
.(M3 .Eo
.67 —

.021.

I
.029

:%$:%
.036 .@6

.007

.038

.029

I--l_
.(IL3 .m6 .022 .026
.oM .@I .I%8 .@%
.032 .036 .0h2 .@15
.030 .036 .Oho .0h6
.073 .0R5 .102 —--
.a& .60” .WJ .0s0
.@3 .~o .M9 .071
.G1 — .062 .I%6
(,) (s) -
.0711 092 055 “k
.057 :0’72 :079 :087
.0s1 .C%7 .0711 .080
.087 .09? .097 .103

-

1
.&

:Fo
-&9
.d16
(a)
.057
.f%2
.050
.080J

.077 --—-

.@5 —

.053 .053

.052 A:

:~8 .1o7
.062 —

:% =

PJ
P
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T~ V -concluded

rrmcrmxmozz wrzamissum - Cencludd

23 Zb 25 26 27 28 29

.035 0.Ml o.ti7 0.65 — .—— 0.m6

.033 .O11o .Lk5 .614 -— — .013

.035 .@!o .oh7 —-- .OI.7.— .017

.oh9 .68 .070 —— ;% --- .030

.021.5.62 .059 — .032

.66 .till .075 –— .039 - .~

(a) (a) (a) — (a) — (a)
. W8 .OBo .108 — .%9 .— .059
(a
)

(a) (a) -— (a) (a) (m)

(a (a) (8) — (a) (a) (a)

(a) .098 .093 — -= .C48 (a)
.09& .C6k —- — — .089
.078 .090 .11o.-— .C63 — .077
.032 ‘ .092 .107 — : .Q$5 “ .077
.107 .127 .137 —- J .102 — —
.115 ; .121 .ln —-- .126 —-— Al
.030 .035 .Ol@ —- .015 —- .Ols

.~~ L- -— --- :% = ‘:%

.031 .032 .o&2 —

.052 .@7 .* .— .06 —– .OM

.c!n .@ .I%l — .036 —- .ao
(a) . O?JJ — -–– .11o .08.5 (a)
. !3% .070 , .076 — .0514-- .063
.078 .088 .!797--— .0s9 —-- .093
.on .077. .0821-— ;O$h --- .075
(4) .069 [:] ,= .098 (8)
,— — (a) (a)
.097 .I.M .119 — .092 -— (a)

.090 .c98 (a) — .005--— .105

.I.lo .I18 .122 —— .120 — .lW

azmo presmm on gage.

i -’

,, 1’ . .,,,,: .41

TlM0f~pms17ra(m c)0n gauemmixl--

T
30 31

1.0260.012
.026 .m2
.026 .Olll
.~2 .032
.c40 .028
gy ~LlJ7

.0M7 .082
[:] (a)

[
●)

(a)
(a) (:]
.103 (a)
.lm (a)

(d (d
—- -—
.026 .O1o
.026 .m2
.0711 .Iwl
.053 .0!15

~ g

.112 ia)

.G93 .SL2
(a) (a)
(a) (a)
(a) (a)
.lu .179

—l—

32 33 3h 35 36 37 38 39]ho]hz]h2]b3

. al? 0.022 0.026 0.01.70.020 — 0.031 o.m2 0.030 0.m2 0.016 o.(l&

.017 .(K2 .027 .o15 .on ——- .031 .m? .031 .027 .Ols .023

.018 .02h .027 .017 .022 .026 .031 .o12 .031 .012 .017 .026

.036 .O!.@ .s0 .m .WS .029 -035 .m7 .037 .m9 .022 .032

.ox .C&O .01u5 .020 .023 .029 .033 .016 .035 .m9 .023 .@8

.056 .062 .073 :~8 .@ .031 .036 .a?o .036 .025 .029 .Oho
(a) (a) (a) .OM :~o .0511 .0611 do .085 .0%’ .051 —
.108 (a) (a) .06 .0!!0 .0% .m .033 .038 Al?
(a) (8) (a) .WJ .C51 .060 .072 .oh9 .090 .056 .@l (8)
(~) (~) (~) .035 X&l .Oh? .055 .037 .039 .*2 owl .088
(a) (a) (a) .036 .O11o — .055 . m9 .M9 .G1 .@9 .098
(a

I

(a) (d

(=

;go m;! .039 .WJ .031 .&l .O11o—
(a) (a)

.C55
.039 .@ .031 .053 .00 .0h5 .l%3

.029 .033 .038 .W .031 .050 .OLo .WZ .056

h B II :% ‘:% To :% :% ‘:% ‘:% :% ‘:%
jll .CQo .025 .o16 .019 .0211 .028 .O1o .Oa .010 .o16 .025

.022 .026 ~016 .021 .026 .030 .012 .028 : .o12 .!x6 .02h
.O’nl .086 .110 .032 .039 .W.l .051 .031 .0% .037 .@ .05h
●C52 .056 .065 .025 .027 .0% .037 .023 .O!u .026 .032 .Oho
.051 .@ .052 ~~9 :0$ .033 .035 .m .038: .@ JJx .037
(a) (*) (=) “ x58 .@ .069 .@h .@ .079
~oJ9 ~y J? .027 .031 ‘— .Oho~ .029 .0&6“ .036‘ .@l .0!18

— .Ofi .Olit: .0115 .036 .052 .OM .050 .055
.122 .136 .158 -— .0311 .038‘ .0h3 .033 .051 .@3 .@B .053
(a) (a) (a) .GJ49 .056 .M1 .0s8 .058 .090 , .098, .l@ .—
(a) (a) (a) .035 .039 .M1 .0L8‘ .dJ1 .60 .m .(%1 .072

(a) w (~) .033 .037 .CL1 .0!!5 .039 .65 .@ .@% .@3

(a) (a) (d .035 .039 .d12 .Ow .OIlo .057 .62 .058 .061
— -— — .035 .0112 .0h5 .c!n .0117 .C63 .C65 .070 .075

w

.



< .
,. .

TAEm 11

(a)w=11~lb:Cd - 0.h8

-

E



—

TMasvI-c16th8mI

Immmnncm FfmmJFa mamIwrIm9 - ~

(.) Ca-uldcd

!2

. , . .



* . , .

TABLB VI - Contllmd

IlmAItrAuwa P$naulm DIsrnIEmIcm - Cmtimed
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T

nun
(dag)

17 0.2

18 0.2

19 6.3

20 6.3

22 6.3 ‘

22 12.h

23 12JJ

& V.4

25 15.h

23.s

27 =5

26 2U.$

29 20.5

30 30.3

‘

t 7 +

(w’=) m) (fw
%

Rwauro (lb/q h.) at zwo *er-

(Z) 23 a 25 % 27 M 29 30 31 32 33 3h 35 36 37 38 39 ho U W ii3

2.51 -0.5 -0.2 0.9 -— 5.1 — 4.3 10.6 3.9 3.8 5.2 7.Z 3.7 4.0 6A 0.6 3.3 2.1 3.8 — h.3
2.58 h.7 6.6 l.~ — 3.3 . 2.7 h.h 2.3 :: }.0 3.5 2.3 2.6 3.0 3.5 1.? 3:; :3 — 2.2
1.75 1.4 1A 3.2 — ~1.8 — 2.2 P.2 .9 1.7 1.2 1.7 l.h 1.0 ●

hh -0.9 0 0 — 3.8 — 3.0 11. B 3.5 3:? 5.2 7.8 3.h
2:h9 -.9 7.0 .9 — 2.8 —

3.9 7.7 0 3.0 0.6 3.3 = 3:8
2JI 5. B 2.6 3.0 3:{ hJ 2.7 3.0 3.9 5.6 2.3 5:; ~: — 2.9

1.82 1.2 1.6 2A — 1.5 — 1.2 1.8 .7 1.1 .7 .9 1.0
2.61 2.5 0

1.3 .7 . — .3
-— U.3 37.2 13.2 0 0 0 0 0 6.1 6.h 2.7 lob 7.6 — 6.h — 12.1

;. 77 ~ :.9 — 7.5 h5.3 7.: %6 lj.?.3.2.7 2.2 t: = ~ ~ 6.6g.: 3.6 1*IJ 55 51
— . 3 s h..

3i91 3.7 0 — 20.1 0 - 0
.

— 16.5
.

68 55 28 — — — 17.2
:.5J 2J.; h:: ~;.3 — 12.0 — 10,0 0 2.5 20.3 L 2 : 6:1 l%! 3:3 ;;:; 17:7 — — — 20.1

7 —-” 9.0 — 7.5 rl.k 11.z y 11.5 1$3 h.1 5.0 1.9 6.0 — — — 6.1
3:17 0’ 0 o“ — 15h — 15.8 — o 3.6 11:7 7.7 lh8
3.79 26.5 3.8 1.3 —- 0:5 — 7.6 — 11.3 17.2 : h:l 3:6 2.3 6.7 6.8 7:2 5::1:9 7:1
3.68 :.; y. 8 13.1 — 6.2 — 5.3 . 8.0 :.: :8 $.2 2.0 2.2
1.34 . .9 1.3 — 2.3 — 1.8 —- 0

3.9 :3 4A 5.0 2.9 ::;

2.70 0 0 0
1.2 0 0 0’ 0

— 0 0 0 0. 0 0
0 0 0

3.56 0 2.3 0 : 1.5 — 0 0 0 0 0 0
13.b 158 22.0 20.3
8.0 8:3 =

0 0
1;!

0 0 0 0 0
3:10 :

8 — 13.7
2:8 : 0 11.6 0 0 0 0 0, 0 0

;:: 1:; ~ 3.3.5 0 7.3 0 6.5~19.2 0 0 0
S:h 5:6 — 5:9 t; %5 1;7 — 7.3

0. 2.7 h.2 —
o 2.2 0 5,h 6.h 7.1 6.6 7.9 10.6 1A .2,8—

h.3 h.? I!.5 !Lh — 8*3
. . . 2.1 3.3 2.0 2.3 — 1.0

2.58 0 0 0 — o — o 0 0 0 0
.07 20.0 22,0 10.8 —

— . 22.0 0
MA — 12.3 : 0 0 c1 IJ — .

30.7 3.7 0 — 1,0
*

. 0 0 0 — o — o 0 0 0 0
7.2 8.6 7.5 9.3 — 6.6

0 — 12.2 — 5.1 lfL8 32.1 0 — o
.u 16.1 16.6 3.5 — 12.8 — o 0 0 0 — 5.8 --- 6.8

— o — o — 0. : 0 0 0
8.7 — —

:35 : 0 0 — o — o
0 Z1.1125.0 2.5 0 — —

o 0 0 0 29.2 33.6 u h.o o — 2.0
L5.216.2 6. 5.6 23.1 23.3 211.8— a.?
19.0 23.0 n.h 2h

IL.16 o
.7 30.2 3.6 0 — o

3.? o — o . 0 0 0 0 0
W6 L6 o

0 1$; 12,2 5.? ~.: y 17.h 18.1 ~ 1}6
— 22.9 —. o 0 0 0 0 0

l.u o 0 — o — o 0 0 0 0
2.47 n

11:2 13:9 5:1
2.8 0 -- 0 — 0 0 0 0 0 0

5:9 23:9 2:0 0 — 0
<.9 7.0 h.o 10.2 11.1 r2.6 u. B — 23.6

* J 2.% 5.9 10.3 7.1 8.0 — 8.1
— —

— u.’
) 10.7 1.0 -2.0 0.2
? 0.5 11.7 3h.o 5.9

0 1371 0 [—IOI—1OIOIOIO Iolol:
Olo-lol —lol —---lo Iololololol:

=7 I C6 o — 16.2 — al o 0 0 Q o Lo h;;
- ?.2 1.6 — o — o . — —

,9 11.b 5.6 — -— — ●2 — — — —- — —

. . =%=-

, * * t .
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.

.

58 120.75
—~-

Mck

Chine

Half-breadth

22~0

Body plan

Station 259 21 58 120. ?5

Keel

=-E=
Profile

Figure 1.- Hull lines of f hat having a 22~0 angle

(All dimensions are in inches.)

of dead rise.
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0 l.~..diameter gaEwJ
2

@ &in.-dlamder gages

026
04

Ohine
08 013 02

02 z

03 O? OH 017023
022

02 069000Uti 016021 028 030
@20

01 05 010 015 ~;; 027029

.

034
033 :
032
031

t-

!z. -+-

Figure 2.- Location of pressure gages In float bottom.
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12r Fairedlinethroughexperimentaldata

“a
Q1

0 .2 94 .6 .8 1.0
12
# , H/sq in.

(a) Run 1; T = 0.2°.

12

s
(d

2

(b) Run 16; T = 30.3°.

.-

Figuxe 3.- Experimental variation of the peak pressure with ~~2 for

two runs.

4



.

1.6

Ill

E?

i+“ ‘1%

II

2

0

@@.im (3)
———— Eqwt~on(5)
— – — Equation (7)

‘-..
\

CA

\

\ 10 o.k3
u .97

\

ATemge qoalnwntdl :peak-premore coefflolents
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Experimental and
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calculated pressure distributions.
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Figure 5.- ~onttiued.
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Figure 5.- Continued.
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Figure 5.- Concluded.
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Figure 6.- The transverse-wave-rise ratio K = — for a float having
tan 61

1°
a 22- angle of dead rise.
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for small trims.
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(b) Geometry for large trims.
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Figure 7.- Wave rise and velocity relations for a prismatic V-bottom
surface.
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